Fractional Power of Rational function method (FPR) data
This class contains the data for the results of the FPR method used in Honda. It obtains a very precise mean function, but is unable to generate the uncertainty bands that Bayesian model mixing can achieve. It is used as a comparison in the paper published with this package.
FPR
Bases: Models
Source code in samba/fprdat.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
__init__(g, loworder, highorder)
A class to calculate the FPR method curves for comparison to the mixed models in the three BMM methods of this package.
Example
FPR(g=np.linspace(1e-6,1.0,100), loworder=np.array([5]), highorder=np.array([5]))
Parameters:
Name | Type | Description | Default |
---|---|---|---|
g |
linspace
|
The input space array over which the models are mixed. |
required |
loworder |
ndarray
|
The highest order considered in the small-g expansion. |
required |
highorder |
ndarray
|
The highest order considered in the large-g expansion. |
required |
Returns:
Type | Description |
---|---|
None. |
Source code in samba/fprdat.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
fpr_plot(mean, intervals, fpr_keys=None, ci=68)
A plotter for the overlay of the GP results and the FPR results from Honda (2014).
Example
FPR.fpr_plot(mean=np.array(), intervals=np.array([,]), fpr_keys=['(3,3)^(1/6)'], ci=95)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean |
ndarray
|
A PPD mean to be compared to the FPR results. |
required |
intervals |
ndarray
|
A 2D array to plot a UQ band around the PPD. |
required |
fpr_keys |
list
|
A list of strings of fpr keys to be read in by the function and calculated using the fprset() function above. |
None
|
ci |
int
|
The uncertainty calculated on the expansions. Can be either 68 or 95. |
68
|
Returns:
Type | Description |
---|---|
None. |
Source code in samba/fprdat.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
fprset(key)
Call the proper FPR function desired and obtain an array of the results in the input space, g.
Example
FPR.fprset(key='(2,4)^(1/8)')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str
|
The preferred FPR function. Enter a key in the convention: '(m,n)^(\alpha)', where m,n are orders less than or equal to N_s and N_l (loworder, highorder in the other classes). \alpha is the value the FPR is raised to in Eq. (2.7) (Honda 2014). |
required |
Returns:
Name | Type | Description |
---|---|---|
fpr |
ndarray
|
Results of the FPR function in an array. |
Source code in samba/fprdat.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|